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Until recently, there was no known formulation of superconformal Chern-Simons theory

in 2+1 dimensions with N = 8 supersymmetry, and in fact the theory was believed not

to exist [1]. This belief was reversed by the explicit construction of a model with N =

8 supersymmetry by Bagger and Lambert [2, 3]. The original formulation of Bagger,

Lambert, and Gustavsson involved the use of a 3-algebra, of which only a single finite

dimensional example with a positive definite metric, the SO(4) 3-algebra, is known to

exist [4, 5]. Shortly after its construction, this SO(4) model was shown to be equivalent to

a more traditional Chern-Simons theory with an SU(2) × SU(2) gauge group, and matter

fields in the bi-fundamental representation [6, 7] which does not rely on the use of a 3-

algebra. These theories are extremely interesting as a candidate Lagrangian description

of the decoupled field theory of M-theory membranes. In the past several months, there

has been significant progress in the understanding of this model and its generalizations

reported in the literature.

A very interesting new perspective on these class of models from the point of view

of string theory was recently presented by Aharony et.al. [8]. These authors considered

a configuration of branes in type IIB string theory involving D3-branes, NS5-branes, and

(p, q) 5-branes of the form illustrated in figure 1. By (p, q) 5-brane, we mean the bound

state of p NS5-branes and q D5-branes. More specifically, we orient the D3-branes along the

0126 directions. We take the 6 direction to be compact. The NS5-branes are oriented along

the 012345 directions, and the (p, q) 5-branes are oriented along the 012[3, 7]θ[4, 8]θ[5, 9]θ
directions. We are following the notational conventions of [8]. This brane configuration

is a particular case of class of configurations considered in [9, 10] which generalizes the

construction of Hanany-Witten type [11]. Localized intersection of (p, q) 5-brane and D3-

brane was also studied recently in [12]. If (p, q) = (1, 0), we recognize this system as

describing an impurity system [13, 14] in 3+1 dimensions [15, 16] which flows to a 2+1

dimensional U(N)×U(N) Yang-Mills theory with bi-fundamental matter preserving N = 4

supersymmetry. For (p, q) = (1, k), one also obtains a defect field theory which flows

to a U(N) × U(N) Yang-Mills theory with a Chern-Simons term at level k and matter

in the bi-fundamental representations. These configurations generically preserve N = 3

supersymmetry [9, 10]. The main observations of [8] are as follows:

• The level k U(N) × U(N) Chern-Simons/Yang-Mills/matter theory flows in the IR

to a level k U(N) × U(N) Chern-Simons/matter theory with no Yang-Mills kinetic

term.

• For k > 2, the IR theory has N = 6 superconformal symmetry

• For k = 1 and k = 2, the supersymmetry of the IR theory is enhanced to N = 8.

Aharony et.al. also noted that had they considered the gauge group SU(2) × SU(2), this

model is equivalent to the product gauge group formulation [6, 7] of the Bagger-Lambert-

Gustavsson theory. From this point of view, the role of the 3-algebra is demoted to the

coincidence of the structure of the SU(2) × SU(2) group, while the brane construction

provides a plethora of models with N ≥ 6 supersymmetry where the features such as the
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(p,q)(1,0)

N D3−branes

Figure 1: A configuration of D3, NS5, and (p, q) 5-branes in type IIB string theory. N D3-branes

wind around an S1 of size L. An NS5-brane and a (p, q) 5-brane intersects the D3-brane at a

localized point along the S1 but extends along the other 3 world volume coordinates of the D3-

branes. Low energy effective theory of open strings is a Chern-Simons/Yang-Mills/matter theory

with gauge group U(N) × U(N).

product gauge group and the bi-fundametal matter content have natural origins.1. The

formulation of [8] also identifies the U(N) × U(N) at k = 1 as the candidate Lagrangian

description for the stack of N M2-branes. Unfortunately, when k = 1 the model is strongly

coupled, making the analysis of interesting features such as the N3/2 scaling of the entropy

beyond reach for the time being.

In order to see the enhancement of supersymmetry from N = 3 to N = 6 or 8 [8], it is

useful to T-dualize the configuration of figure 1 along the 6 coordinate and lift to M-theory.

This gives rise to a configuration of N M2-branes in eleven dimensions, compactified in

2 cycles, the (6,11), transverse to the world volume of the M2. The (1, 0) and the (p, q)

5-branes are mapped to an overlapping configuration of KK5-branes with charged (1, 0)

and (p, q) with respect to the U(1)×U(1) associated with the 6 and 11 cycles, respectively.

As it turns out, the complete supergravity description of these overlapping KK5-branes is

known from the work of [18]. It can be described as an eight dimensional geometry with

sp(2) holonomy, and for general (p, q) gives a family of geometries generalizing Taub-NUT

× Taub-NUT space which has holonomy group sp(1) × sp(1). With the sp(2) holonomy,

the geometry is hyper-Kähler and preserves 3/16 of the supersymmetries of the eleven

dimensional supergravity, which is precisely what we expect for the dual of theories in 2+1

dimensions with N = 3 supersymmetry. These spaces have also appeared as moduli-space

of BPS monopoles [19, 20]. Just as in the case of the Taub-NUT geometry, the overlapping

KK5-brane has a core region which is an orbifold C4/Zk where the discrete symmetry

Zk rotates each of the four complex plane in C4 by an amount 2π/k. Such an orbifold

preserves 3/8 of the supersymmetry of eleven dimensional supergravity for k > 2 and 1/2

for k = 1, 2 [21]. Adding the M2 branes does not break any further supersymmetries.

For a theory with large N and large ’t Hooft coupling λ = N/k, we are lead to take the

gravitational back reaction of the M2 branes into account, giving rise to a dual AdS4×S7/Zk

geometry.

1A formulation of N = 6 theory in terms of 3-algebra appeared in a recent article [17]
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Let us now consider taking the limit where the cycle along the 6-direction, transverse

to the M2-brane, is made arbitrarily large. This amounts to making the compact world

volume of the D3-brane along the 6 direction in the original type IIB description, illustrated

in figure 1, small. We would then have a Chern-Simons/Yang-Mills/matter system on the

world volume of the D2-brane which we can decouple from gravity provided we scale the

radius along the eleven direction appropriately.

It is possible to consider the supergravity dual of this configuration by taking the

gravitational back reaction of the M2 branes into account. Such a description would be

appropriate for large N . Finding the gravitational back reaction of the M2-brane amounts

to finding a solution to Laplace’s equation with a source in the background of the over-

lapping KK5-brane geometry. Once the Laplace equation is solved, it is straight forward

to embed it into the solution to the equation of motion of eleven dimensional supergravity

using the standard ansatz.

In fact, a problem very similar to this was discussed for the case where the KK5-

brane geometry simplified to R4 × Taub-NUT or Taub-NUT × Taub-NUT [22] where the

holonomy group is sp(1), and sp(1) × sp(1), respectively. The harmonic function is gener-

ically a solution to linear, partial differential equation. In [22], the Laplace equation was

solved using brute force separation of variables. The resulting supergravity solution was

interpretable as being dual to 2+1 dimensional SYM with matter in the fundamental rep-

resentation. Regardless of the matter content, Yang-Mills theory in 2+1 dimensional is

superrenormalizable, and as such, this supergravity solution is a dual of a UV complete

field theory.

The goal of this paper is to solve for the analogous harmonic function for the overlap-

ping KK5-brane geometry. By taking the appropriate decoupling limit, we obtain a super-

gravity solution which one can interpret as being dual to a specific Chern-Simons/Yang-

Mills/matter theory in 2+1 dimensions. We will examine the form and the tractability

of the Laplace equation in this background, with the expectation that the sp(2) special

holonomy should provide some degree of analytic control. Note that this precise program

was outlined in the last paragraph of [22].

Let us begin by reviewing the basic ansatz for the intersecting brane configuration

following [22]. We consider the ansatz

ds2 = H−2/3(−dt2 + dx2
1 + dx2

2) + H1/3ds2
M8 (1)

F = dt ∧ dx1 ∧ dx2 ∧ dH−1 (2)

where M8 is the eight dimensional sp(2) holonomy manifold, and H(yi) is a scalar function

depending only on the coordinates of M8. By substituting this ansatz into the equation

of motion of supergravity in eleven dimensions, one can show that H is required to solve

the Laplace equation in M8.

Next, let us review the metric for M8 [18]. It is given by

ds2 = Vijd~yid~yj + (V −1)ijRiRj(dϕi + Ai)(dϕj + Aj) (3)

where

Vij = δij +
1

2

RipiRjpj

|R1p1~y1 + R2p2~y2|
+

1

2

Rip̃iRj p̃j

|R1p̃1~y1 + R2p̃2~y2|
, (4)
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i, j take values 1, 2, and ~yi are 3 vectors. We have restricted our attention to the case where

there are two overlapping KK5-branes whose charges are

(p1, p2) = (1, 0), (p̃1, p̃2) = (1, k) (5)

to match the construction of [8]. The ϕi coordinate is chosen to have period 2π. So R1

and R2 are radius of S1 × S1 which we identify as the 6 and 11 directions, respectively.

Therefore, when taking the decoupling limit, we scale

R1 =
2πα′

L
, R2 = gsls = cg2

Y M2α
′ (6)

where c = (2π)p−2 = 1 for p = 2 [23], and L is the size of the circle along the 6-direction

in the dual type IIB description illustrated in figure 1. In the decoupling limit, we must

keep g2
Y M2 fixed, but we are free to vary L, and eventually we take L → 0 to simplify the

analysis. This limit corresponds to R2/R1 ∝ g2
Y M2L → 0.

The simplest and the most symmetric case to consider is to place the M2-brane at the

origin ~y1 = ~y2 = 0. We also restrict our attention to a solution symmetric with respect to

shifts in ϕ1 and ϕ2. In the near core region, this is simply the rotational symmetry of the

ansatz.

It is then straight forward to write the Laplace equation on this geometry as

0 = ∂µ(
√

ggµν∂νH) = ~∂i det V (V −1)ij~∂jH(~y1, ~y2) . (7)

This can be simplified a little by changing variables

~r1 = ~y1, ~r2 = ~y2 +
R1

kR2
~y1 . (8)

The Laplace equation will then have the form

[(

1 +
kR2

2r2

)

~∂2
1 +

2R1

kR2

~∂1 · ~∂2 +

(

1 +
R2

1

k2R2
2

+
R1

2r1

)

~∂2
2

]

H(~r1, ~r2) . (9)

The most symmetric configuration can depend, in general, on

r1 = |~r1|, r2 = |~r2|, z =
~r1 · ~r2

r1r2
. (10)

In terms of these variables, the differential operators appearing in 9 have the form

~∂2
i =

1

ri

(

∂

∂ri

)2

ri +
1

r2
i

(

(1 − z2)∂2
z − 2z∂z

)

(11)

~∂1 · ~∂2 =
1

r1r2

(

z(z2 − 1)∂2
z + (1 + z2)∂z

)

+
(1 − z2)

r1
∂r2

∂z +
(1 − z2)

r2
∂r1

∂z + z∂r1
∂r2

.(12)

At this point, we are faced with a linear yet seemingly unseparable partial differential

equation of three variables, with no obvious hope for any simplification.
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We are, however, entitled to take the large R1 limit. To do this, it is convenient to make

the change of variables standard in taking the near core limit of a Taub-NUT geometry

r1 =
ρ2
1

2R1
, r2 =

ρ2
2

2kR2
. (13)

In these coordinates, the metric on M8 has the form

ds2
M8 =

(

1 +

(

1

R2
1

+
1

k2R2
2

)

ρ2
1

)(

dρ2
1 +

ρ2
1

4
(dθ2

1 + sin2 θ1dφ2
1)

)

+

(

1 +
ρ2
2

k2R2
2

)(

dρ2
2 +

ρ2
2

4
(dθ2

2 + sin2 θ2dφ2
2)

)

− ρ2
1ρ

2
2

2k2R2
2

(

d~r1 · d~r2

r1r2

)

+

(

1
R2

1

+ 1
ρ2

1

+ 1
ρ2

2

k
ρ2

2

k
ρ2

2

1
R2

2

+ k2

ρ2

2

)−1 ij

(dϕi + Ai)(dϕj + Aj) (14)

where θi and φi are the angular coordinates in S2 of ~r. We have not reparameterized the

term proportional to d~r1 ·d~r2/r1r2 but it should be clear that this expression is independent

of R1. After taking R1 → ∞ keeping ρi and R2 fixed, the harmonic equation becomes

0 =

[(

1 +
ρ2
2

k2R2
2

)(

∂2
ρ1

+
3

ρ1
∂ρ1

+
4

ρ2
1

(

(1 − z2)∂2
z − 2z∂z

)

)

(15)

+

(

1 +
ρ2
1

k2R2
2

)(

∂2
ρ2

+
3

ρ2
∂ρ2

+
4

ρ2
2

(

(1 − z2)∂2
z − 2z∂z

)

)

+
2ρ2

1ρ
2
2

k2R2
2

(

~∂1 · ~∂2

kR1R2

)]

H(ρ1, ρ2, z)

where the expression

~∂1 · ~∂2

kR1R2
=

4

ρ2
1ρ

2
2

(

z(z2 − 1)∂2
z + (1 + z2)∂z

)

+
2

ρ2
1ρ2

(1 − z2)∂ρ2
∂z +

2

ρ1ρ2
2

(1 − z2)∂ρ1
∂z +

z

ρ1ρ2
∂ρ1

∂ρ2
(16)

is independent of R1 despite appearances. Although this equation is still not separable, we

see that if R2 → ∞, this equation simplifies to

0 =

[(

∂2
ρ1

+
3

ρ1
∂ρ1

+
4

ρ2
1

(

(1 − z2)∂2
z − 2z∂z

)

)

+

(

∂2
ρ2

+
3

ρ2
∂ρ2

+
4

ρ2
2

(

(1 − z2)∂2
z − 2z∂z

)

)]

H(ρ1, ρ2, z) (17)

which is separable. An obvious solution is

H0 =
c′Nl6p

(ρ2
1 + ρ2

2)
3

, (18)

where c′ = 25π2 [24]. Such simplicity is exactly what we expect because when R2 → ∞ we

are working in the near core limit where M8 = C4/Zk.
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Let us now look at how the harmonic equation depends on R2. One can in fact collect

its dependence on R2 and write down a recursion relation

AHi+1(ρ1, ρ2, z) = −BHi(ρ1, ρ2, z) (19)

where A and B are differential operators

A =

(

∂2
ρ1

+
3

ρ1
∂ρ1

+
4

ρ2
1

(

(1 − z2)∂2
z − 2z∂z

)

)

+

(

∂2
ρ2

+
3

ρ2
∂ρ2

+
4

ρ2
2

(

(1 − z2)∂2
z − 2z∂z

)

)

B =

[

ρ2
2

k2R2
2

(

∂2
ρ1

+
3

ρ1
∂ρ1

+
4

ρ2
1

(

(1 − z2)∂2
z − 2z∂z

)

)

+
ρ2
1

k2R2
2

(

∂2
ρ2

+
3

ρ2
∂ρ2

+
4

ρ2
2

(

(1 − z2)∂2
z − 2z∂z

)

)

+
2ρ2

1ρ
2
2

k2R2
2

(

~∂1 · ~∂2

kR1R2

)]

. (20)

This means

Hi = (−A−1B)iH0 (21)

and

H =
∑

i

Hi =
1

1 + A−1B
H0 . (22)

Although this expression for the solution appears rather formal, it is acceptable if the

operator A is invertible, or in other words that the zero-modes of A may be projected out

by appropriate boundary conditions for large ρi. In fact, after separating variables, one

obtains the differential equation

(

(1 − z2)∂2
z − 2z∂z + n(n + 1)

)

f(z) = 0 (23)

which is solved by

f(z) = Ln(z) (24)

where Ln(z) is the Legendre polynomial of degree n. This is the natural basis to work

in when acting with A−1. To generate the recursive sum, one must act with B, expand

the z dependence in Legendre polynomial basis, and convolve the Green’s function with

respect to ρ1 and ρ2. As a proof of principle, we will compute the first few terms in the

expansion. Physically, this computation captures the behavior of the RG flow close to the

superconformal IR fixed point.

An effective technique for computing the action of A−1 is the method of undetermined

coefficients. Acting with B, we find that

BH0 =

(

96zρ2
1ρ

2
2

k2R2
2(ρ

2
1 + ρ2

2)
5
− 24(ρ2

1 − ρ2
2)

2

k2R2
2(ρ

2
1 + ρ2

2)
5

)

c′Nl6p. (25)

We then consider a general linear combination of basis functions for which action by A pro-

duces terms of the form in (25). The basis functions must satisfy the following properties.

First, they may only depend on ρi through ρ2
i , and must be symmetric under interchanging

ρ1 and ρ2. Second, for physical reasons we expect poles only of the form 1
(ρ2

1
+ρ2

2
)n

. Third,

H1 should not contain any factors more divergent than 1
(ρ2

1
+ρ2

2
)4

. Once the power of 1
(ρ2

1
+ρ2

2
)

– 6 –
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is established, there will be an additional coefficient of ρ2
1ρ

2
2 as determined by dimensional

analysis (up to a change of basis functions.) This motivates the ansatz

k2R2
2H1 = c1

zρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
4

+ c2
z

(ρ2
1 + ρ2

2)
2

+ c3
ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
4

+ c4
1

(ρ2
1 + ρ2

2)
2

(26)

which solves the first stage of the recursion relation for c1 = 2, c2 = 0, c3 = 2, c4 = −1, or

H1 =
c′Nl6p
k2R2

2

(

2(1 + z)ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
4

− 1

(ρ2
1 + ρ2

2)
2

)

. (27)

A similar calculation produces for H2:

H2 =
c′Nl6p
k4R4

2

(

8

3

(1 + z)2ρ4
1ρ

4
2

(ρ2
1 + ρ2

2)
5

− 26

9

(1 + z)ρ2
1ρ

2
2

(ρ2
1 + ρ2

2)
3

+
10

9

1

(ρ2
1 + ρ2

2)

)

. (28)

At each order in the recursion, there are finitely many basis functions, so this method can

be applied at any order. It quickly becomes clear, though, that at higher orders the explicit

calculations become quite cumbersome. Moreover, a problem of a different sort begins to

appear at the third order in the recursion — equation (19) is satisfied for AH3 = −BH2

where we may add any constant to H3. In a complete solution, this zero-mode would be

fixed by the behavior of H(ρ1, ρ2) at large ρi, after the resummation, and our perturbative

solution is inadequate for this purpose. Nevertheless, H1 and H2 do appear to have some

pattern suggesting that perhaps there is some way to resum this series, or that perhaps

the harmonic function can be computed numerically.

By substituting this solution into the ansatz (2), and scaling, as usual for the M2-

branes [24],

ρ1 = l3/2
p U

1/2
1 , ρ2 = l3/2

p U
1/2
2 , (29)

we will obtain a supergravity dual of the decoupled field theory. To see the structure of

this solution, let us first examine the scaling of the metric of M8

ds2
M8 = l3pdS2

M8(U1, θ1, φ1, ϕ1, U2, θ2, φ2, ϕ2) (30)

where

dS2
M8 =

(

1 +
U1

ck2g2
Y M2

)(

1

4U1
dU2

1 +
U1

4
(dθ2

1 + sin2 θ1dφ2
1)

)

(31)

+

(

1 +
U2

k2cg2
Y M2

)(

1

4U2
dU2

2 +
U2

4
(dθ2

2 + sin2 θ2dφ2
2)

)

− U1U2

2cg2
Y M2k

2

(

d~r1 · d~r2

r1r2

)

+

(

1
U1

+ 1
U2

k
U2

k
U2

1
cg2

Y M2

+ k2

U2

)−1 ij

(dϕi + Ai)(dϕj + Aj)

has the dimension of inverse length and is independent of lp. We have expressed R2 in

terms of the field theory parameter

R2
2 = cg2

Y M2l
3
p (32)

– 7 –
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by combining (6) with the standard relation

lp = g1/3ls . (33)

Let us also introduce a scaled harmonic function

h(U1, θ1, φ1, U2, θ2, φ2) = l3pH (34)

which is also independent of lp. Using (18) as H0, we have

h0 = l3pH0 =
c′N

(U1 + U2)3

h1 = l3pH1 =
c′N

cg2
Y M2k

2

(

2(1 + z)U1U2

(U1 + U2)4
− 1

(U1 + U2)2

)

(35)

h2 = l3pH2 =
c′N

c2g4
Y Mk4

(

8(1 + z)2U2
1 U2

2

3(U1 + U2)5
− 26(1 + z)U1U2

9(U1 + U2)3
+

10

9(U1 + U2)

)

which indeed is independent of lp. In terms of these quantities, the supergravity solution

we are after takes the form

ds2 = l2p

[

h−2/3(−dt2 + dx2
1 + dx2

2) + h1/3dSM8

]

(36)

where the expression inside the square bracket only depends on field theory variables and

not on lp. Also, for small U1 and U2, the geometry asymptotes to AdS4 × S7/Zk. It is

also straight forward to reduce this geometry to type IIA. These geometries capture the

renormalization group flow of Chern-Simons/Yang-Mills/matter system down to N = 6, 8

superconformal Chern-Simons/matter theory, and is effective for N ≫ k.

The explicit solution to the eleven dimensional supergravity equations of motion given

in (22), (31), (35), and (36) is the main result of this paper. Admittedly, the solution we

found is not in an ideal form. The recursive nature of the solution presented here makes

it cumbersome to evaluate and display the function even using numerical methods. Still,

the form that the solution takes for large and small Ui was clear from the beginning. The

recursive procedure provides the details of the solution near the cross-over region at the

scale g2
Y M2k corresponding to the mass deformation due to the Chern-Simons term.

The eight dimensional hyper-Kähler geometry we studied in this paper has quite a bit

of structure [18]. The fact that a recursive procedure for solving for the Greens function

on this space suggests the possibility that there exists more elegant approaches to the

problem we considered. Green’s functions in self-dual four manifolds have been analyzed

using various methods [25, 26]. Perhaps some of these methods can be applied to the

problem considered in this paper.
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